M1.		(a)	Single bonds only /no double or multiple bonds;	1
		Cor	ntains carbon and hydrogen <u>only;</u> C and H <u>only</u> not C and H molecules	
		Alka	anes;	1
	(b)	` '	Fractions or hydrocarbons or compounds have different ng points/ separation depends on bp; Ignore mp and vdw	
		(0)		1
		(2)	bp depends on size/ M,/ chain length; If refer to bond breaking/cracking/ blast furnace/oxygen/air 2 max	1
			emp gradient in <u>tower or column</u> / cooler at top of <u>column</u> ce versa; <i>QWC</i>	1
			Higher bp / larger or heavier molecules at bottom (of mn) or vice versa; Not increasing size of fraction Not gases at top	1
	(c)	(brol	ge molecules or compounds or long chain hydrocarbons ken) into <u>smaller</u> molecules or compounds or smaller n hydrocarbons; <i>QWC</i>	1
		Zec	olite or aluminosilicate (catalyst);	
		C ₁₄ H	$H_{30} \rightarrow C_8 H_{18} + C_6 H_{12};$ Only	1
			iller chain molecules are in more demand or have higher e or vice versa:	1

misumoterit to say more ascrannave more asc.	Insufficient to say	/ more ι	useful/have	more	uses
--	---------------------	----------	-------------	------	------

(d) $C_8H_{18} + 8\frac{1}{2}O_2 \rightarrow 8CO + 9H_2O;$ Allow multiples 1 Rh/ Pd/Pt/Ir or in words; Penalise contradiction of name and symbol 1 $2CO + 2NO \rightarrow 2CO_2 + N_2 / 2CO + O_2 \rightarrow 2CO_2$; Allow multiples 1 Greenhouse gas/ absorbs infrared radiation; 1 car less powerful/ car stops/ reduced performance/ won't run smoothly/ can't accelerate; Not incomplete combustion or bad effect on engine Not doesn't go as far. 1 Test it (before sale) /Quality control etc; 1 (f) (compounds with) same molecular formula / same no and type of atoms; Not atoms/elements with same molecular formula. If same chemical formula, can allow M2 1 And different structure/ structural formula;

M2 consequential on M1 Allow displayed formula for M2

2,2,4-trimethylpentane;

Only (but allow numbers in any order)

[20]

1

1

M2. (a) (i) fractional distillation or fractionation

1

(ii) C₉H₂₀ <u>only</u>

1

(iii) $C_{11}H_{24} + 17O_2 \rightarrow 11CO_2 + 12H_2O$

1

(iv) $C_{11}H_{24} + 6O_2 \rightarrow 11C + 12H_2O$

1

 $(b) \qquad (i) \qquad C_{\scriptscriptstyle 10} H_{\scriptscriptstyle 22} \to C_{\scriptscriptstyle 3} H_{\scriptscriptstyle 6} \ + \ C_{\scriptscriptstyle 7} H_{\scriptscriptstyle 16}$

1

(ii) correctly drawn structure of methylpropene (insist on clearly drawn C-C and C=C bonds)

1

- (c) Any two from
 - o chemically similar or chemically the same or react in the same way
 - o same functional group
 - o same general formula
 - o differ by CH₂

(penalise same molecular formula or same empirical formula)

2

[8]

М3.

(i) $C_{15}H_{32} + 23 O_2 \rightarrow 15 CO_2 + 16 H_2O$

Products (1)

Balance (1)

If wrong reactant C.E

(ii) Identity of product: CO or carbon monoxide (1)

Any balanced equation using CH4, producing CO

could also make C + CO₂

[4]

M4. (a) A catalyst in the same phase/phase as the reactants

1

(b) (i) A reaction in which a product acts as a catalyst

1

(ii) Mn^{2+} or Mn^{3+} "Self-catalysing" not allowed

1

- $2CO + 2NO \rightarrow 2CO_2 + N_2$ (c) (i)
 - $4CO + 2NO_2 \rightarrow 4CO_2 + N_2$ C not allowed as a product

1

Reducing agent CO

1

Pt, Pd or Rh (ii)

1

Deposited on a ceramic honeycomb or matrix or mesh or sponge

1

To increase surface area of catalyst

1

(d) Reactants cannot move on surface or products not desorbed or (i) Active sites blocked

1

(ii) Reactants not brought together or No increase in reactant concentration on catalyst surface or Reactants not held long enough for a reaction to occur or

M5. (a) (i) Prevents release of toxic CO More energy efficient (releases more energy on combustion)

1

1

(ii) $C_6H_{14} + 6.5O_2 \rightarrow 6CO + 7H_2O$

1

Suitable product eg CO or C

1

Balanced equation

1

(iii) Detect CO gas or C (soot or particles) in exhaust gases

1

(b) $CH_3CH_2CH_2CH(CH_3)_2$

1

2-methylpentane

1

CH₃CH₂CH(CH₃)CH₂CH₃ etc

1

(c) (i) CH₃CH₂CH₂CH=CH₂

1

(ii) Alumino silicate etc

1

	(III)	Can be made into polymers (or alcohols etc)	1
(d)	(i)	% atom economy = mass $CH_2CI_2/total$ mass reactants = $85 \times 100/158$ = 53.8%	1
	(ii)	Because expensive chlorine is not incorperated into desired product Raise money by selling HCl	1

[14]