M1. (a) Single bonds only /no double or multiple bonds;

Contains carbon and hydrogen only;
C and H only
not C and H molecules

Alkanes;
(b) (1) Fractions or hydrocarbons or compounds have different boiling points/ separation depends on bp;

Ignore $m p$ and $v d w$
(2) bp depends on size/ M_{J} chain length;

If refer to bond breaking/cracking/ blast furnace/oxygen/air 2 max
(3) Temp gradient in tower or column / cooler at top of column or vice versa;

QWC
(4) Higher bp / larger or heavier molecules at bottom (of column) or vice versa;

Not increasing size of fraction
Not gases at top
(c) Large molecules or compounds or long chain hydrocarbons (broken) into smaller molecules or compounds or smaller chain hydrocarbons;

QWC

Zeolite or aluminosilicate (catalyst);
$\mathrm{C}_{14} \mathrm{H}_{30} \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{C}_{6} \mathrm{H}_{12} ;$
Only

Smaller chain molecules are in more demand or have higher value or vice versa;
(d) $\mathrm{C}_{8} \mathrm{H}_{18}+81 / 2 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}+9 \mathrm{H}_{2} \mathrm{O}$;

Allow multiples
$\mathrm{Rh} / \mathrm{Pd} / \mathrm{Pt} / \mathrm{lr}$ or in words;
Penalise contradiction of name and symbol
$2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2} / 2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2} ;$
Allow multiples

Greenhouse gas/ absorbs infrared radiation;
(e) car less powerful/ car stops/ reduced performance/ won't run smoothly/ can't accelerate;

Not incomplete combustion or bad effect on engine
Not doesn't go as far.

Test it (before sale)/Quality control etc;
(f) (compounds with) same molecular formula / same no and type of atoms;

Not atoms/elements with same molecular formula.
If same chemical formula, can allow M2

And different structure/ structural formula;
M2 consequential on M1
Allow displayed formula for M2

2,2,4-trimethylpentane;

Only (but allow numbers in any order)

M2. (a) (i) fractional distillation or fractionation
(ii) $\mathrm{C}_{9} \mathrm{H}_{20}$ only
(iii) $\mathrm{C}_{11} \mathrm{H}_{24}+17 \mathrm{O}_{2} \rightarrow 11 \mathrm{CO}_{2}+12 \mathrm{H}_{2} \mathrm{O}$
(iv) $\mathrm{C}_{11} \mathrm{H}_{24}+6 \mathrm{O}_{2} \rightarrow 11 \mathrm{C}+12 \mathrm{H}_{2} \mathrm{O}$
(b) (i) $\mathrm{C}_{10} \mathrm{H}_{22} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{7} \mathrm{H}_{16}$
(ii) correctly drawn structure of methylpropene (insist on clearly drawn $C-C$ and $C=C$ bonds)
(c) Any two from
o chemically similar or chemically the same or react in the same way
o same functional group
o same general formula

- differ by CH_{2}
(penalise same molecular formula or same empirical formula)

M3. (i) $\mathrm{C}_{15} \mathrm{H}_{32}+23 \mathrm{O}_{2} \rightarrow 15 \mathrm{CO}_{2}+16 \mathrm{H}_{2} \mathrm{O}$
Products (1)
Balance (1)
If wrong reactant C.E
(ii) Identity of product: CO or carbon monoxide (1)

Equation: $\mathrm{CH}_{4}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O}$ (1)
Any balanced equation using CH_{4}, producing CO could also make $\mathrm{C}+\mathrm{CO}_{2}$

M4. (a) A catalyst in the same phase/phase as the reactants
(b) (i) A reaction in which a product acts as a catalyst
(ii) Mn^{2+} or Mn^{3+}
"Self-catalysing" not allowed
(c) (i) $2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$

$$
\text { or } \quad 4 \mathrm{CO}+2 \mathrm{NO}_{2} \rightarrow 4 \mathrm{CO}_{2}+\mathrm{N}_{2}
$$

C not allowed as a product

Reducing agent CO
(ii) Pt, Pd or Rh

Deposited on a ceramic honeycomb or matrix or mesh or sponge

To increase surface area of catalyst
(d) (i) Reactants cannot move on surface or products not desorbed or Active sites blocked

1
(ii) Reactants not brought together or No increase in reactant concentration on catalyst surface or Reactants not held long enough for a reaction to occur or

Page 5

M5. (a) (i) Prevents release of toxic CO
 More energy efficient (releases more energy on combustion)

(ii) $\mathrm{C}_{6} \mathrm{H}_{14}+6.5 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}+7 \mathrm{H}_{2} \mathrm{O}$

Suitable product eg CO or C

Balanced equation
(iii) Detect CO gas or C (soot or particles) in exhaust gases
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

2-methylpentane
1

1
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$ etc
(c) (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
(ii) Alumino silicate etc
(iii) Can be made into polymers (or alcohols etc)
(d) (i) $\%$ atom economy $=$ mass $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ total mass reactants $=85 \times 100 / 158$
= 53.8%
(ii) Because expensive chlorine is not incorperated into desired product Raise money by selling HCl

1

